Science

Cutout of throughput change when warming up mirror during first Euclid decontamination campaign.

Euclid successfully de-iced, gains 15% sensitivity

Every space mission starts on Earth, in humid air and warm temperatures. After launch all satellites are then exposed to the vacuum of space, all air just rushes out, and everything cools down fast, to freezing temperatures of -150°C in the case of the Euclid space telescope. Once in space all that is left is the metal and Silicon Carbide and other materials that the instruments are made of. And a bit of water – which has consequences if it ends up as a thin layer on mirrors or lenses. Euclid just successfully removed ice and gained 15% of light transmission.

Euclid successfully de-iced, gains 15% sensitivity Read More »

Aurora over Edinburgh, 2023-09, photo by Gordon Gibb

Space weather

Euclid is a space mission, for a very good reason: on the surface of Earth, “ground-based” telescopes are subject to sunlight during the day, varying temperatures, to clouds, humidity, wind, and sometimes even rain. They are subject to a constantly varying atmosphere – the consequences of ‘weather’. Euclid’s core science, cosmology, however, requires a telescope with very stable properties – not possible in ground-based weather – so Euclid had to go to space. In contrast, is the Sun-Earth-Lagrange-Point-2, where Euclid is now stationed, the most perfectly stable place? Well, not completely. We’ll tell you why.

Space weather Read More »

Measuring the Universe with Baryon Acoustic Oscillations

Hidden in the large-scale structure of the Universe – the so-called cosmic web, subtle waves provide a priceless view on the cosmos, helping scientists highlight some of the mysteries about its structure, evolution, and its current accelerated expansion governed by dark energy. This phenomenon is known as Baryon Acoustic Oscillations (BAOs). To understand what they are, we must travel back in time to the early Universe! Are you ready?

Measuring the Universe with Baryon Acoustic Oscillations Read More »

Mapping the dark Universe with gravitational weak lensing

Gravitational lensing is a fascinating phenomenon that happens because of the way gravity works according to Einstein’s theory of General Relativity: mass curves spacetime. Imagine you have a massive object, like a star or a galaxy, sitting in space. This object has a strong gravitational pull, which means it will bend spacetime and – since light follows a path along this now bent space – it also bends the path of light that passes nearby.

Mapping the dark Universe with gravitational weak lensing Read More »

Scroll to Top